home *** CD-ROM | disk | FTP | other *** search
- /* specfunc/bessel_j.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- /* Author: G. Jungman */
-
- #include <config.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_errno.h>
- #include <gsl/gsl_sf_pow_int.h>
- #include <gsl/gsl_sf_trig.h>
- #include <gsl/gsl_sf_bessel.h>
-
- #include "error.h"
-
- #include "bessel.h"
- #include "bessel_olver.h"
-
- /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
-
- int gsl_sf_bessel_j0_e(const double x, gsl_sf_result * result)
- {
- double ax = fabs(x);
-
- /* CHECK_POINTER(result) */
-
- if(ax < 0.5) {
- const double y = x*x;
- const double c1 = -1.0/6.0;
- const double c2 = 1.0/120.0;
- const double c3 = -1.0/5040.0;
- const double c4 = 1.0/362880.0;
- const double c5 = -1.0/39916800.0;
- const double c6 = 1.0/6227020800.0;
- result->val = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*c6)))));
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- gsl_sf_result sin_result;
- const int stat = gsl_sf_sin_e(x, &sin_result);
- result->val = sin_result.val/x;
- result->err = fabs(sin_result.err/x);
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return stat;
- }
- }
-
-
- int gsl_sf_bessel_j1_e(const double x, gsl_sf_result * result)
- {
- double ax = fabs(x);
-
- /* CHECK_POINTER(result) */
-
- if(x == 0.0) {
- result->val = 0.0;
- result->err = 0.0;
- return GSL_SUCCESS;
- }
- else if(ax < 3.1*GSL_DBL_MIN) {
- UNDERFLOW_ERROR(result);
- }
- else if(ax < 0.25) {
- const double y = x*x;
- const double c1 = -1.0/10.0;
- const double c2 = 1.0/280.0;
- const double c3 = -1.0/15120.0;
- const double c4 = 1.0/1330560.0;
- const double c5 = -1.0/172972800.0;
- const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*c5))));
- result->val = x/3.0 * sum;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- gsl_sf_result cos_result;
- gsl_sf_result sin_result;
- const int stat_cos = gsl_sf_cos_e(x, &cos_result);
- const int stat_sin = gsl_sf_sin_e(x, &sin_result);
- const double cos_x = cos_result.val;
- const double sin_x = sin_result.val;
- result->val = (sin_x/x - cos_x)/x;
- result->err = (fabs(sin_result.err/x) + fabs(cos_result.err))/fabs(x);
- result->err += 2.0 * GSL_DBL_EPSILON * (fabs(sin_x/(x*x)) + fabs(cos_x/x));
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_ERROR_SELECT_2(stat_cos, stat_sin);
- }
- }
-
-
- int gsl_sf_bessel_j2_e(const double x, gsl_sf_result * result)
- {
- double ax = fabs(x);
-
- /* CHECK_POINTER(result) */
-
- if(x == 0.0) {
- result->val = 0.0;
- result->err = 0.0;
- return GSL_SUCCESS;
- }
- else if(ax < 4.0*GSL_SQRT_DBL_MIN) {
- UNDERFLOW_ERROR(result);
- }
- else if(ax < 1.3) {
- const double y = x*x;
- const double c1 = -1.0/14.0;
- const double c2 = 1.0/504.0;
- const double c3 = -1.0/33264.0;
- const double c4 = 1.0/3459456.0;
- const double c5 = -1.0/518918400;
- const double c6 = 1.0/105859353600.0;
- const double c7 = -1.0/28158588057600.0;
- const double c8 = 1.0/9461285587353600.0;
- const double c9 = -1.0/3916972233164390400.0;
- const double sum = 1.0+y*(c1+y*(c2+y*(c3+y*(c4+y*(c5+y*(c6+y*(c7+y*(c8+y*c9))))))));
- result->val = y/15.0 * sum;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- gsl_sf_result cos_result;
- gsl_sf_result sin_result;
- const int stat_cos = gsl_sf_cos_e(x, &cos_result);
- const int stat_sin = gsl_sf_sin_e(x, &sin_result);
- const double cos_x = cos_result.val;
- const double sin_x = sin_result.val;
- const double f = (3.0/(x*x) - 1.0);
- result->val = (f * sin_x - 3.0*cos_x/x)/x;
- result->err = fabs(f * sin_result.err/x) + fabs((3.0*cos_result.err/x)/x);
- result->err += 2.0 * GSL_DBL_EPSILON * (fabs(f*sin_x/x) + 3.0*fabs(cos_x/(x*x)));
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_ERROR_SELECT_2(stat_cos, stat_sin);
- }
- }
-
-
- int
- gsl_sf_bessel_jl_e(const int l, const double x, gsl_sf_result * result)
- {
- if(l < 0 || x < 0.0) {
- DOMAIN_ERROR(result);
- }
- else if(x == 0.0) {
- result->val = ( l > 0 ? 0.0 : 1.0 );
- result->err = 0.0;
- return GSL_SUCCESS;
- }
- else if(l == 0) {
- return gsl_sf_bessel_j0_e(x, result);
- }
- else if(l == 1) {
- return gsl_sf_bessel_j1_e(x, result);
- }
- else if(l == 2) {
- return gsl_sf_bessel_j2_e(x, result);
- }
- else if(x*x < 10.0*(l+0.5)/M_E) {
- gsl_sf_result b;
- int status = gsl_sf_bessel_IJ_taylor_e(l+0.5, x, -1, 50, GSL_DBL_EPSILON, &b);
- double pre = sqrt((0.5*M_PI)/x);
- result->val = pre * b.val;
- result->err = pre * b.err;
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return status;
- }
- else if(GSL_ROOT3_DBL_EPSILON * x > (l*l + l + 1.0)) {
- gsl_sf_result b;
- int status = gsl_sf_bessel_Jnu_asympx_e(l + 0.5, x, &b);
- double pre = sqrt((0.5*M_PI)/x);
- result->val = pre * b.val;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * b.err;
- return status;
- }
- else if(l > 1.0/GSL_ROOT6_DBL_EPSILON) {
- gsl_sf_result b;
- int status = gsl_sf_bessel_Jnu_asymp_Olver_e(l + 0.5, x, &b);
- double pre = sqrt((0.5*M_PI)/x);
- result->val = pre * b.val;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * b.err;
- return status;
- }
- else {
- double sgn;
- double ratio;
- int stat_CF1 = gsl_sf_bessel_J_CF1(l+0.5, x, &ratio, &sgn);
- double jellp1 = GSL_SQRT_DBL_EPSILON * ratio;
- double jell = GSL_SQRT_DBL_EPSILON;
- double jellm1;
- int ell;
- for(ell = l; ell > 0; ell--) {
- jellm1 = -jellp1 + (2*ell + 1)/x * jell;
- jellp1 = jell;
- jell = jellm1;
- }
-
- if(fabs(jell) > fabs(jellp1)) {
- gsl_sf_result j0_result;
- int stat_j0 = gsl_sf_bessel_j0_e(x, &j0_result);
- double pre = GSL_SQRT_DBL_EPSILON / jell;
- result->val = j0_result.val * pre;
- result->err = j0_result.err * fabs(pre);
- result->err += 2.0 * GSL_DBL_EPSILON * (0.5*l + 1.0) * fabs(result->val);
- return GSL_ERROR_SELECT_2(stat_j0, stat_CF1);
- }
- else {
- gsl_sf_result j1_result;
- int stat_j1 = gsl_sf_bessel_j1_e(x, &j1_result);
- double pre = GSL_SQRT_DBL_EPSILON / jellp1;
- result->val = j1_result.val * pre;
- result->err = j1_result.err * fabs(pre);
- result->err += 2.0 * GSL_DBL_EPSILON * (0.5*l + 1.0) * fabs(result->val);
- return GSL_ERROR_SELECT_2(stat_j1, stat_CF1);
- }
- }
- }
-
-
- int
- gsl_sf_bessel_jl_array(const int lmax, const double x, double * result_array)
- {
- /* CHECK_POINTER(result_array) */
-
- if(lmax < 0 || x < 0.0) {
- int j;
- for(j=0; j<=lmax; j++) result_array[j] = 0.0;
- GSL_ERROR ("error", GSL_EDOM);
- }
- else if(x == 0.0) {
- int j;
- for(j=1; j<=lmax; j++) result_array[j] = 0.0;
- result_array[0] = 1.0;
- return GSL_SUCCESS;
- }
- else {
- gsl_sf_result r_jellp1;
- gsl_sf_result r_jell;
- int stat_0 = gsl_sf_bessel_jl_e(lmax+1, x, &r_jellp1);
- int stat_1 = gsl_sf_bessel_jl_e(lmax, x, &r_jell);
- double jellp1 = r_jellp1.val;
- double jell = r_jell.val;
- double jellm1;
- int ell;
-
- result_array[lmax] = jell;
- for(ell = lmax; ell >= 1; ell--) {
- jellm1 = -jellp1 + (2*ell + 1)/x * jell;
- jellp1 = jell;
- jell = jellm1;
- result_array[ell-1] = jellm1;
- }
-
- return GSL_ERROR_SELECT_2(stat_0, stat_1);
- }
- }
-
-
- int gsl_sf_bessel_jl_steed_array(const int lmax, const double x, double * jl_x)
- {
- /* CHECK_POINTER(jl_x) */
-
- if(lmax < 0 || x < 0.0) {
- int j;
- for(j=0; j<=lmax; j++) jl_x[j] = 0.0;
- GSL_ERROR ("error", GSL_EDOM);
- }
- else if(x == 0.0) {
- int j;
- for(j=1; j<=lmax; j++) jl_x[j] = 0.0;
- jl_x[0] = 1.0;
- return GSL_SUCCESS;
- }
- else if(x < 2.0*GSL_ROOT4_DBL_EPSILON) {
- /* first two terms of Taylor series */
- double inv_fact = 1.0; /* 1/(1 3 5 ... (2l+1)) */
- double x_l = 1.0; /* x^l */
- int l;
- for(l=0; l<=lmax; l++) {
- jl_x[l] = x_l * inv_fact;
- jl_x[l] *= 1.0 - 0.5*x*x/(2.0*l+3.0);
- inv_fact /= 2.0*l+3.0;
- x_l *= x;
- }
- return GSL_SUCCESS;
- }
- else {
- /* Steed/Barnett algorithm [Comp. Phys. Comm. 21, 297 (1981)] */
- double x_inv = 1.0/x;
- double W = 2.0*x_inv;
- double F = 1.0;
- double FP = (lmax+1.0) * x_inv;
- double B = 2.0*FP + x_inv;
- double end = B + 20000.0*W;
- double D = 1.0/B;
- double del = -D;
-
- FP += del;
-
- /* continued fraction */
- do {
- B += W;
- D = 1.0/(B-D);
- del *= (B*D - 1.);
- FP += del;
- if(D < 0.0) F = -F;
- if(B > end) {
- GSL_ERROR ("error", GSL_EMAXITER);
- }
- }
- while(fabs(del) >= fabs(FP) * GSL_DBL_EPSILON);
-
- FP *= F;
-
- if(lmax > 0) {
- /* downward recursion */
- double XP2 = FP;
- double PL = lmax * x_inv;
- int L = lmax;
- int LP;
- jl_x[lmax] = F;
- for(LP = 1; LP<=lmax; LP++) {
- jl_x[L-1] = PL * jl_x[L] + XP2;
- FP = PL*jl_x[L-1] - jl_x[L];
- XP2 = FP;
- PL -= x_inv;
- --L;
- }
- F = jl_x[0];
- }
-
- /* normalization */
- W = x_inv / sqrt(FP*FP + F*F);
- jl_x[0] = W*F;
- if(lmax > 0) {
- int L;
- for(L=1; L<=lmax; L++) {
- jl_x[L] *= W;
- }
- }
-
- return GSL_SUCCESS;
- }
- }
-
-
- /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
-
- #include "eval.h"
-
- double gsl_sf_bessel_j0(const double x)
- {
- EVAL_RESULT(gsl_sf_bessel_j0_e(x, &result));
- }
-
- double gsl_sf_bessel_j1(const double x)
- {
- EVAL_RESULT(gsl_sf_bessel_j1_e(x, &result));
- }
-
- double gsl_sf_bessel_j2(const double x)
- {
- EVAL_RESULT(gsl_sf_bessel_j2_e(x, &result));
- }
-
- double gsl_sf_bessel_jl(const int l, const double x)
- {
- EVAL_RESULT(gsl_sf_bessel_jl_e(l, x, &result));
- }
-
-